M1.(a) $d=\frac{8.9 \times 10^{-12} \times 2.3 \times 250 \times 10^{-4}}{370 \times 10^{-12}} \checkmark$
$1.4 \times 10^{-3} \mathrm{~m}(1.4(1.38) \mathrm{mm}) \checkmark$
Data substitution - condone incorrect powers of 10 for C and A
(b) New capacitance $=161 \mathrm{pF} \checkmark$

New $V=0.13 \mathrm{nC} / 161 \mathrm{pF}=81 \mathrm{~V}$
(d) Energy increases because:

In the polar dielectric molecules align in the field with positive charged end toward the negative plate (or WTTE). \checkmark

Work is done on the capacitor separating the positively charged surface of the dielectric from the negatively charged plate (or vice versa). \checkmark

M2.C

M3. (a) area of overlap of the plates
separation of/distance between the plates
permittivity/dielectric constant of free space/the material/dielectric between the plates (condone of the gap)

B1 for 1 factor clearly stated
B1 for other two clearly stated
(b) (i) $Q=V C$ (any form) or $0.047 \mu \mathrm{~F} \times 12$ (ignoring powers of 10)

C1
$5.6(4) \times 10^{-7} \mathrm{C}(0.56 \mu \mathrm{C})$
A1
(ii) time constant $=4.7 \times 10^{-5} \mathrm{~s}$ or $0.01=\mathrm{e}^{-\mathrm{PRC}}$

C1
$\left.0.01=\mathrm{e}^{-(4(0.00047}\right)$ or $0.01=\mathrm{e}^{-1477}$ or $=\frac{t}{R C}=4.605$
C1
$2.2(2.16) \times 10^{-4} \mathrm{~s}$ or 0.22 ms
A1
(iii) their (i) $\times 400\left(230(226) \mu \mathrm{A}\right.$ or $2.3 \times 10^{-4} \mathrm{~A}$ if correct)

M4. (a) $C=\varepsilon_{0} \varepsilon_{\gamma} A / d$

C1
15.6 nF or 16 nF
(b) (i) $2.4 \times 10^{\circ}(\mathrm{V})$

M5. (a) 1 coulomb of charge is stored for a p.d. of 1 V between the plates (or equivalent statement) Condone I coulomb per volt

B1

C1
Plate area $=4.65 \times 10^{-3} \mathrm{~m}^{2}$ or $\mathrm{C}=\frac{\frac{\varepsilon_{0} \varepsilon_{r} \pi r^{2}}{d}}{}$ with correct data
(b) (i) Correct substitution in $\mathrm{C}=\frac{\frac{\varepsilon_{0} \varepsilon_{r} A}{d}}{}$ (ignore powers of 10) A1 Radius $=($ their area $/ 3.14) 1 / 2 ; 0.038(4$ or 5$) \mathrm{m}$ if correct

B1
3
(ii) $\mathrm{E}=1 / 2 \mathrm{CV}^{2}$ or correct numerical substitution or $E=1 / 2 Q V \& Q=V C$

C1
$4.1(4) \times 10^{-10} \mathrm{~J}$
A1
(c) Time constant $=R C$ or Time to halve $=0.69 R C$ or $\mathrm{V}=\mathrm{V}_{0} \mathrm{e}^{- \text {VRC }}$

C1
Time to fall to $1 / \mathrm{e}(0.19 \mathrm{~ms})$ or time to halve (0.13 ms) or $V_{o}=6 \mathrm{~V}$ and correct coordinates of point on line (0.6 ms max)
8.1-8.6 M Ω

