M1.(a)
$$d = \frac{8.9 \times 10^{-12} \times 2.3 \times 250 \times 10^{-4}}{370 \times 10^{-12}} \checkmark$$
1.4 × 10³ m (1.4 (1.38) mm) \checkmark
Data substitution – condone incorrect powers of 10 for C and
A \checkmark
(b) New capacitance = 161 pF \checkmark
New \lor = 0.13 nC / 161pF = 81 $\lor \checkmark$
(c) Energy stored = $\frac{1}{2} \times 161 \times 10^{-12} \times 81^2 \checkmark$
(d) Energy increases because:
In the polar dielectric molecules align in the field with positive charged end

toward the negative plate (or WTTE). ✓

Work is done on the capacitor separating the positively charged surface of the dielectric from the negatively charged plate (or vice versa). \checkmark

[8]

[1]

2

M2.C

M3. (a) area of overlap of the plates

	pern	aration of/distance between the plates hittivity/dielectric constant of free space/the erial/dielectric between the plates (condone of the gap)		
		or 1 factor clearly stated or other two clearly stated	B1	2
(b)	(i)	Q = VC (any form) or 0.047 μF × 12 (ignoring powers of 10)		
			C1	
		5.6(4) × 10 ⁻⁷ C (0.56 μC)		
			A1	
	(ii)	time constant = 4.7 × 10 ^{-₅} s or 0.01 = e ^{-<i>v</i>,<i>c</i>}		
	(11)	$11110 = 00151011 = 4.7 \times 10^{-5} = 010.01 = 0$	C1	
		$0.01 = e^{-t/(0.00047)}$ or $0.01 = e^{-t/47}$ or $= \frac{t}{RC} = 4.605$	01	
			C1	
		2.2 (2.16) × 10 ^{-₄} s or 0.22 ms		
			A1	
	(iii)	their (i) × 400 (230 (226) µA or 2.3 × 10 ^{-₄} A if correct)	B1	6

[8]

M4.		(a)	$C = \mathcal{E}_{\sigma} \mathcal{E}_{\gamma} A/d$		
		15.6	nF or 16 nF	C1	
				A1	2
	(b)	(i)	2.4 × 10° (V)		
				B1	1
		(ii)	$\frac{1}{2}$ CV ² (or $\frac{1}{2}$ QV if attempt to calculate Q made)		
				C1	
			4.3–5.0 × 10 [™] J		
				A1	2
		(iii)	36–40 C		
				B1	1
	(c)	(c) recognition that 1% of charge or voltage remains			
				C1	
		any appropriate form of decay equation (either exponential or logarithmic)			
				C1	
		3.4	8 × 10º Ω cao (but do not allow if physics error)		
				A1	3

[9]

M5. (a) 1 coulomb of charge is stored for a p.d. of 1 V between the plates (or equivalent statement) Condone I coulomb per volt B1 1 $\varepsilon_0 \varepsilon_r A$ d (ignore powers of 10) Correct substitution in C = (b) (i) C1 ε₀ε,πr² d Plate area = 4.65×10^{-3} m² or C = with correct data A1 Radius = (their area /3.14)1/2; 0.038(4 or 5) m if correct Β1 3 $E = \frac{1}{2} CV^2$ or correct numerical substitution or (ii) $E = \frac{1}{2} QV \& Q = VC$ C1 4.1(4) × 10⁻¹⁰ J A1 Time constant = RC or Time to halve = 0.69 RC (c) or $V = V_0 e^{-t/RC}$ C1 Time to fall to 1/e (0. 19 ms) or time to halve (0. 13 ms) or $V_o = 6$ V and correct coordinates of point on line (0.6 ms max) C1 8.1 - 8.6 MΩ

[9]

2

3

A1

PhysicsAndMathsTutor.com